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Abstract
Across the social sciences, scholars regularly pool e!ects over substantial periods of time, a practice that

produces faulty inferences if the underlying data generating process is dynamic. To help researchers better

perform principled analyses of time-varying processes, we develop a two-stage procedure based upon

techniques for permutation testing and statistical process monitoring. Given time series cross-sectional

data, we break the role of time through permutation inference and produce a null distribution that reflects

a time-invariant data generating process. The null distribution then serves as a stable reference point,

enabling the detection of e!ect changepoints. In Monte Carlo simulations, our randomization technique

outperforms alternatives for changepoint analysis. A particular benefit of ourmethod is that, by establishing

the bounds for time-invariant e!ects before interacting with actual estimates, it is able to di!erentiate

stochastic fluctuations fromgenuinechanges.Wedemonstrate themethod’sutilitybyapplying it toapopular

study on the relationship between alliances and the initiation ofmilitarized interstate disputes. The example

illustrates how the technique can help researchers make inferences about where changes occur in dynamic

relationships and ask important questions about such changes.

Keywords: changepoint analysis, permutation tests, time series cross-sectional data

1 Introduction
Many important social and political processes—such as international conflict, democratization,

votingbehavior, andpublicpolicy implementation—manifestover time.Since theseare inherently

longitudinal processes, it is natural that their temporal dynamics be amajor focus for researchers.

In particular, when working with time series cross-sectional (TSCS) data, relationships between

variables are likely to vary over time. Such time-varying relationships stand in stark contrast to the

implicit assumption of stable e!ects built intomodels that estimate a single set of coe!icients for

data spanning awide range of time. Indeed, correctly detectingwhere relationships between vari-

ables change is not only important formaking accurate inferences, it also provides an opportunity

to explore substantively interesting questions about why relationships change at some points in

time but not others. In order to do so, we propose a novel technique for estimating the probability

that a coe!icient’smagnitude changes at any point in timewhen fitting generalized linearmodels

with TSCS data.

We approach time-varying relationships as a changepoint problem (e.g., Barry and Hartigan

1993; Erdman and Emerson 2007; Killick and Eckley 2014; Blackwell 2018), where the object of

interest is a time series of coe!icients with a mean that changes an unknown number of times at

unknown locations.However, unlike changepoint approaches that seek to find the setofpartitions

withina timeseries thatminimizeacost function,weproposeanovel two-step technique thatuses

a permutation test to inform a statistical process monitoring (SPM) procedure.1 More specifically,

1 For similar applications that also overview the SPM literature, see Ge, Song, and Gao (2013), Montgomery and Keats (1991),
Montgomery (2013), Wilson, Stevens, and Woodall (2019), and Woodall et al. (2017).
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we first approximate a null distribution of time-invariant coe!icients through permutation infer-

ence. The resulting distribution sets the size of a moving window that scans the time series and

returns the probability of a changepoint for each coe!icient.

Notably, our discussion is not the first to highlight the importance of accuratelymodeling time-

varying coe!icients.2 Nor are we alone in discussing the inferential challenges associated with

dynamic data.3 But we find in Monte Carlo simulations that our technique provides substantial

advantages over other comparable changepoint methods. The method’s accuracy derives from

its use of data-driven bounds for stable behavior, which minimize the risk of overfitting when

detecting changepoints.

A*er presenting the method in detail and discussing Monte Carlo simulation results, we apply

the technique to a popular study of the relationship between alliances and militarized interstate

dispute initiation. We find that the study’s general claims about deterrence hold, but that the

relationship’s magnitude changes at multiple historically interesting times. These changepoints

provide an example of how the method can raise conceptual questions about why a relationship

varieswhen it does.We closewith somenotes of caution and recommendations for best-practices.

2 Monitoring Generalized Linear Models
In TSCSdata, oneobservesNunits repeatedly overT timeperiods. Data canalsobe representedby

the sequence {(Xi t ,Yi t ), i = 1, . . . ,N , t = 1, . . . ,T },whereYi t ∈!
n is theoutcome response variable

for observation i at time t, and Xi t is an n × p matrix of p predictors at time t. In many cases, the

goal is to estimate the relationship betweenYi t andXi t . For a varying-coe)icient generalized linear

model (Hastie andTibshirani 1993), one does this by treatingYi t as a randomvariablewhosemean

µi t relates to the predictorsXi t as follows:

g (µi t ) = Xi tβ t , i = 1, . . . ,N t = 1, . . . ,T . (1)

where a separate vector of p coe!icients, βt = (β1t ,β2t , ...,βpt ), is fit for each time period and g (·)

is an appropriately chosen link function that maps µi t to a linear function of the predictors Xi t .

Common choices of g (·) include the identity, logit, and natural log function, corresponding to

multivariate linear, logistic, and Poisson regression, respectively.4

In the case of a pooled glm, one is quantifying the average e!ect of Xi t on the mean of Yi t ,

requiring a static relationship between Xi t and Yi t through time. The average relationship is

accurate across each time period and equivalent to a time-varyingmodel if β̂1 = β̂2 = · · · = β̂T . For

manyapplications this assumption simplydoesnothold, as the relationshipbetweenXi t andYi t is

dynamic for at least one key variable.5 In light of such concerns over detectingwhere relationships

change and understanding why, we provide a technique that answers two questions about the

relationship between two variables:

1. Is the e!ect βt constant through time?

2. If βt is not constant across all time points, thenwhen does the e!ect significantly di!er from

previous periods?

2 Examples include, but are not limited to: Braumoeller (2013), Cranmer, Heinrich, and Desmarais (2014), Jenke and Gelpi
(2016), Thurner et al. (2018), and Wawro and Katznelson (2014).

3 E.g., Beck (1983), Beck, Katz, and Tucker (1998), Beck (2001, 2008), Box-Ste!ensmeier and Jones (2004), Box-Ste!ensmeier
et al. (2014), Carter and Signorino (2010), De Boef and Keele (2008), Gelman and Hill (2007), Gill (2014), Golub (2008),
Huckfeldt, Kohfeld, andLikens (1982), JenkeandGelpi (2016), King (1998),Mitchell, Gates, andHegre (1999), Nieman (2016),
Park (2012), Wawro and Katznelson (2014), and Zorn (2001).

4 Note that the formulation in Equation (1) is amenable to more complicated extensions, such as fixed or random e!ects,
lagged dependent variables, first di!erences, various standard errors, and more. But if working with TSCS data, there
always is a concern that, however extensive one’s model, if a single coe!icient is fit for multiple time periods, then that
estimate maymiss important variation over time.

5 This issue is first raised in Political Science by Beck (1983).
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Figure 1. Display of constructing and applying the moving window. The top distribution includes the esti-
matedvaluesof β̂ fromrandomtemporal samples. Thebluebarat thebaseof thedistribution is theestimated
tolerance region, R. The lower figure then is the time series of coe!icient estimates for the simulated data.
The tolerance region begins at time = 1 and once a coe!icient’s point-estimate falls outside of the region a
change is signaled. That change is colored blue. A new region is built around the change with the same size
but a new center.

2.1 Detecting Change Locations
Consider a time series of coe!icient estimates for a generalized linear model in Equation (1):

(β̂1, β̂2, . . . , β̂T ). If the relationship is constant across any period of time, then each observed

β̂t estimate within that range will vary around a stable mean value. However, if the relationship

changes, then the subsequent observed β̂t estimates will vary around a new value. For any two

variables, a visual demonstrationof sucha time-varying relationship canbe foundat thebottomof

Figure 1. Detecting changepoints in such a time series is a statistical challenge because predictions

are unverifiable and all time points are candidates for change, meaning there are an unknown

number of partitions in the time series with unknown locations. In this sense, one is faced with an

unsupervised exercise of estimating Pr(Changet = 1) for each point in time.

In order to detect where changes have occurred, we draw on the SPM literature and apply

a moving window to the time series of coe!icients β̂t . SPM approaches take a statistic St (in

our application coe!icient estimates), or more generally a vector of statistics S t , that provides

a summary of a dataset {(Xt ,Yt ), t = 1, . . . ,T }. Perhaps the most common SPM approach for

identifyingmultiple changes is amoving-windowcontrol chart (Ge etal. 2013). In a typicalmoving-
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window approach, one produces a tolerance region, R, based upon the values of St in a training

period. Foreachnewsetofobservations (Xt ,Yt ),St is calculated.Thenewdata isdeemed“typical”

if St ∈ R and deemed “anomalous” otherwise. Once a data point is labelled anomalous, a new

tolerance region is produced.

Our approach determines the size of R through permutation inference before monitoring the

time series. By repeatedly sampling a random set of time periodswithout replacement, extracting

all data in those time points, and estimating the coe!icient of interest, we are able to approximate

anull distributionof time-invariant coe!icients. Because the timeperiods are sampled at random,

anyobserveddi!erences across estimates are not expected tobedue to the timeperiods selected.

The permutation-based null distribution informs the tolerance region’s size by estimating how

much coe!icient variation occurs when the relationship is time-invariant. More formally, this

permutation procedure is executed in the following steps.

LetYi t = g−1(Xi tβt )+εi t , where i = 1, ...,N and t = 1, ...,T . Moreover, let L represent thenumber

of sampling iterations and J be the size of each random sample, where a sample is a set of time

periods. The following four steps are repeatedly carried out:

Constructing a Null Distribution for β̂

• For each # ∈ {1, ...,L} :

– Randomly sample J time periods without replacement, so that each j ∈ {1, ...,T }
– For each j ∈ {1, ..., J } extract (Xj ,Yj )

– Estimate β̂ , whereYi j = g−1(Xij β )+ εi j
– Store β̂ (# ) = β̂

The sampled values {β̂ (# ) : # = 1, . . . ,L} serve as a reference distribution against which we test

for change. Specifically, we construct the tolerance regionR using a Shewhart control chart, where

the tolerance region for element βk t at time t is β̂k t ± 3σk , k = 1, ...,p where σk is the standard

deviation of the estimated coe!icients {β̂ (1)
k
, . . . , β̂

(L)
k

}, and t is the first time point in the tolerance

region. We note that the Shewhart chart is one of many possible choices of a control chart from

the SPM literature. For slow cumulative changes or small changes in the observed sequence, one

may instead utilize the cumulative sum or exponentially weighted moving average control charts

(seeWoodall andMontgomery 1999 for anoverviewof other possiblemethods).6Wesubsequently

refer to our technique as a Shewhart chart.

For parsimony, assume that the subsequent monitoring procedure is carried out on a single

variable, whose estimated coe!icient at time t is β̂t .7 Next, a prespecified probability cuto!, ρ

(0.5 by default), is selected to represent the necessary probability for β̂t to signal a change. The

probability that β̂t signals a change is then the percent of the estimated sampling distribution that

is greater thanor less thanR, dependingonwhether thepointestimate is aboveorbelowthemean

value within R. In other words, the probability of change for each time point, Pr (Changet = 1), is

the density of the estimated sampling distribution for β̂t outside of R. Though easily changed, as

a default if a coe!icient’s point estimate is not insideR, thenwe reflectmost SPM approaches and

label an estimate as a change because more than half of the sampling distribution is outside R.

This follows standard practice with logistic regression, where a predicted probability greater than

6 Our strategy ofmonitoring the coe!icients of a fittedmodel is related to thework ofWilson et al. (2019), whomonitored the
estimated coe!icients of parametric statistical network models through time. Their work revealed that one can e!iciently
monitor changes in longitudinal data bymonitoring fitted estimates to a possibly dynamicmodel. The primarymotivation
for using ±3σ stems from prediction intervals being larger than confidence intervals. In addition, rather than ±2σ , we opt
for ±3σ because of the risk of multiple comparisons; repeatedly comparing a threshold to observations risks mistaking
noise for change, so we favor a larger window.

7 This stands in contrast to the discussion thus far which has been about a general discussion of monitoring a vector of p
coe!icients over time.
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0.50 is generally classified as 1, rather than 0, because 1 is more likely than not. If the estimated

Pr(Changet = 1) > ρ, then β̂t is labelled a changepoint. Formally, this process is carried out as:

Monitoring a Coe!icient, β̂t

• For each t ∈ {1, ...,T }, with a prespecified threshold ρ:

– If t = 1:

* Let µk = β̂t , where k ∈ {1, ...,K } and K is the final number of partitions.
* Let Rk = µk ± 3σ , where Rk is the tolerance region for partition k and σ is the

standard deviation of the estimated null distribution of time-invariant e!ects.

– Else:

* If: Pr (β̂t ∈ R) ≤ ρ, where Pr (β̂t ∈ R) is the percent of the sampling distribution for
β̂t within R:

· β̂t is not labelled a changepoint and Pr (β̂t ∈ R) is stored.

* Else:

· β̂t is labelled a changepoint and Pr (β̂t ∈ R) is stored.
· A new tolerance region, Rk is calculated, where Rk = β̂t ±3σ .

2.2 Minimizing Overfitting
Given the range of options for changepoint analysis (Aminikhanghahi and Cook 2017), why is the

proposed technique favorable? The method’s conceptual strength stems from its ability to avoid

overfitting. As discussed in Haynes, Eckley, and Fearnhead (2017) and Killick and Eckley (2014),

changepoint analyses are easily susceptible to mistaking noisy fluctuations for genuine change,

inspiring a literature on penalties meant to o!set this risk.8 For example, in a popular R package,

estimates are produced byminimizing the following: 9

m+1∑

i=1

[
C(y(τi−1+1):τi )

]
+β f (m). (2)

Herem is the number of proposed partitions, y is the ordered data sequence, τi−1 and τi are the

start and end of candidate partitions, C is a cost function, and β f (m) is a penalty that guards

against overfitting. For example, the penalty value we use in simulation with this so*ware is

2× log(n), which is equivalent to the BIC/SIC penalty. In general, β f (m) is a tunable parameter

which dictates the number of changepoints identified.

The emphasis placed on penalty inclusion in popular research and so*ware captures the

challenge posed by overfitting. However, in these applications, because true changepoints are

unknown one cannot evaluate the quality of their exogenously set penalty. This leaves the

researcher without knowledge of whether or not they are applying a penalty that is too strict

or too light. We sidestep this tuning problem altogether through the permutation-based null

distribution, which lets the data inform a threshold for di!erentiating noise from actual change.

3 Simulation Results
In order to test our method’s performance we conduct a Monte Carlo simulation, evaluating

the Shewhart chart’s performance at each iteration and comparing it to alternative methods for

changepoint analysis.10 When evaluating the Shewhart chart across iterations, we compare it to

8 The approach is similar to a LASSO regression, where a regularization parameter, λ, imposes a penalty that shrinks
coe!icients toward zero, emphasizing strong relationships that are resilient to the penalty’s imposition.

9 One can find a more detailed walkthrough in pages 2–5 of Killick and Eckley (2014).
10 Replication data and code can be found in Kent, Wilson, and Cranmer (2020a) and Kent et al. (2020b).
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Table 1. Root mean squared error by number of changes.

Zero One Two Three Four Five Six

Shewhart chart 1.28 0.71 1.12 1.86 2.68 3.49 4.32

Bayesian changepoint 1.25 1.18 1.67 2.27 3.17 3.86 4.85

Changepoint 0.06 0.81 1.56 2.38 3.31 4.14 5.12

CUSUM 0.00 1.00 2.00 3.00 4.00 4.99 6.00

BCP analysis (Erdman and Emerson 2007), the non-BCP techniques referenced in Equation (2),

and a cumulative sum control chart (CUSUM) test. These alternative methods and accompanying

R packages are chosen because they cover most approaches to changepoint analysis, have

reasonable runtimes, and do not require that the user prespecifies the number of changepoints.11

The steps of each simulation iteration were specified so that data for a varying-coe!icient

linear model, Yi t = Xi tβt + εi t , was generated with a prespecified number of changes in βt for

one predictor, x1t , with all other relationships constant across the data. For each iteration a

regression for every timeperiodwas fit, allmethodswereapplied to estimates for the time-varying

coe!icient, and the di!erence between the true and estimated number of changes was stored.

Across iterations, σ (the standard deviation for the distribution which coe!icients were drawn

from) was varied inmagnitude when the time-varying coe!icient βt was generated, manipulating

noise within each stable portion of time series. Specifically:

Monte Carlo Simulation Steps

• For each iteration:

– The number of changepoints, P, is drawn from a truncated normal distribution.12

– The location(s) of parameter changes are determined through P draws froma discrete
uniform distribution,U (1,T ).

– The mean value for each partition, µp , is drawn from a standard normal distribution,
for p = {1, . . . ,P +1}.

– Data for each timeperiod, t is generated througha linearmodelwhere each coe!icient
value for the time-varying coe!icientβt is drawn fromanormaldistributionwithmean
µp and standard deviation σ .

– All changepoint techniques are applied to the time series of coe!icient estimates β̂t
for the time-varying relationship.

– The di!erence between the actual and estimated number of changes is recorded.

Table 1provides a broad summary of the simulation’s results, where iterations are comparedby

the truenumber of coe!icient changes. For each iteration, amethod’s error is calculated as thedif-

ference between the estimated and true number of changes, meaning errors closer to 0 represent

better performance. For example, if there are two changes but only one is detected, then the error

would be −1. Across each number of changes, with the time series growing increasingly dynamic

as the number increases, the Shewhart chart has the lowest mean squared error, except for when

there are zero changes.13 Though, and we return to this before concluding, the more dynamic the

time-series, then, regardless of method chosen, the more di!icult accurate estimation becomes.

11 This is an unfortunate feature of MCMCpack’s changepoint functionality, which requires specifying the number of change-
points in advance and then returns the most likely locations.

12 Sampling from a truncated normal distribution ensured a positive number of parameters were selected. The distribution
has a minimum of 1, mean of 1, and standard deviation of 2. Each draw was also rounded to a whole number.

13 On cases with zero changes, the technique uses 3σ from the distribution of time-invariant e!ects to inform the Shewart
chart’s bounds, or 99% of the estimated variation. Mistaking 1 in 50, or 98%, of the stable cases for a change follows
expectations, providing additional evidence that the method performs as expected.
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Figure 2. Simulation results for eachmethod stratified by the true number of coe!icient changes. The x-axis
corresponds to the di!erence between the estimated and actual number of coe!icient changes. The y-axis is
the true number of coe!icient changes in the simulateddata. Theboxplots capture the summary statistics for
each method’s performance. Results from BCP analysis are in blue, the Shewhart chart’s results are in red,
changepoint is in green, and CUSUM in gold. Whiskers are generally one-sided because each method only
tends to have especially large errors when they overfit andmistake noise for changepoints, leading to a large
positive di!erence between the estimated and true number of changes.

Moving to a visual representation, Figure 2 displays a summary of eachmethod’s performance

across the simulation. Bayesian changepoint (BCP) analysis,whichdoes not include apenalty, has

thegreatest tendency tooverfit,with caseswhere themaximumnumberof errors is systematically

far greater than0. In caseswhere the error term is positive, themethodof interest returnsmultiple

false positives—detecting changepoints that do not exist. Considering the othermethods, CUSUM

tests are overly conservative and as the number of changepoints increases, the more they tend

to treat the time series as having a stable mean but high variance. Changepoint analyses with an

imposed penalty term avoid overfitting, having few instances of positive errors. But, the penalty

appears to impose systematically too strict of a standard, rendering errors further from 0 in all

cases except for those without any changepoints. Conversely, the Shewhart chart’s performance

is closest to 0 across most conditions.

Last, we assess the average run length—the average time it takes for a change to be detected,

once it has occurred. To estimate this, we ran a Monte Carlo simulation where only one change

occurs, but the magnitude of this change and its location varies. We then applied all techniques

to the resulting time series of coe!icient estimates, recording whether a change was detected

and, if detected, the time elapsed a*er the change until detection. We present the results of the

simulation in Figure 3 and Table 2. CUSUM and non-BCP tests are le* out of these descriptive

statistics because they tend to fail to detect a change in these situations. Visually, the results look

similar across techniques. A closer look at the summary statistics reveals a more nuanced story,

however. While the twomethods perform similarlywhen a change is detected, with a lower mean

for the Shewhart Chart but an equivalent median for both, the false-negative rate (undetected

changes) is far higher for BCP analysis. Because there are so many more undetected changes for

the Bayesian approach, its bars in Figure 3 are shorter than those for the Shewhart chart.
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Figure 3. Distribution of run lengths for each method in a Monte Carlo simulation where only one change
occurs. CUSUM and non-BCP results are not included because the methods tend to be too conservative and
miss the change altogether. Results from the Shewhart chart are in red and BCP in blue. Run length is the
amount of time between when a change occurs and the change is detected. 10,000 iterations were run in
total. Cases where no change is detected are not included but noted in Table 2.

Table 2. Summary statistics for simulationswith one change. The statistics represent: whether a changewas
detected and, if detected, the amount of time a*er a change before it is detected.

Min First Median Mean Third Max Undetected

quantile quantile

Shewhart chart 0 1 2 4.45 5 46 3336

Bayesian changepoint 0 0 2 6.21 8 45 6081

4 Application to Militarized Interstate Disputes
To demonstrate the model’s applicability, we replicated Leeds’ (2003) study on the relationship

between alliance types and the initiation of militarized interstate disputes (MIDs). Using data

spanning from 1816 to 1944, Leeds fits a generalized estimating equation (Zorn 2001)with terms for

the association between various types of alliances—defensive alliances, o!ensive alliances, and

neutrality pacts—and the initiation of a MID. Leeds argues that defensive alliances are negatively

associatedwithMID initiation and that o!ensive alliances and neutrality pacts are positively asso-

ciated with MID initiation. The results are important because they establish the actual empirical

association between these variables, whereas theoretically relationships in varying directions

are plausible. Moreover, applying the Shewhart chart introduces the question: “Under what

conditions are alliances more versus less e!ective deterrents?,” rather than solely focusing on

whether alliances appear e!ective on average.

In order to test for the number of changes and their location, we obtained coe!icient esti-

mates over time by fitting a varying-coe!icient model across temporal subsets of the dataset.

Specifically, we produced estimates by: selecting twenty years of data,14 fitting themodel, storing

results, moving forward one year, fitting the model again, and so on.15 This approach allowed us

14 This length was chosen because we found it allowed for enough variation in the dependent variable to obtain reliable
coe!icient estimates, but maximized the number of coe!icient estimates we could analyze.

15 In other words, we fit models from 1845 to 1865, 1846 to 1866, 1847 to 1867, ..., 1924 to 1944. We did not include estimates
from 1816 to 1844 because these models produced unreliable estimates due to model separation.
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Figure 4. Replication and extension of Leeds (2003). Red, larger estimates correspond to changes detected
by the Shewhart chart. Black estimates are considered stable by both techniques. The pooledmodel’s results
are a reference point across the figure in green, with dot-dash lines for the pooled confidence interval.

to maximize the number of coe!icient estimates while ensuring each model included su!icient

data.16 The results can be seen in Figure 4. First, as a reference point for the previously unmodeled

heterogeneity, the pooledmodel’s point-estimate and confidence interval are included across the

figure in greenwithdot-dashed lines for confidence intervals. Next, coe!icient estimateswhichare

not detected as a change are included in black and detected changes by the Shewhart chart are in

redwith larger dots. The estimateswhich are predicted to be changepoints include data from 1862

to 1882, 1878 to 1898, 1897 to 1907, and 1901 to 1921. It then follows to ask why these time periods

correspondwith estimated changes, whereas others do not. A full investigation of the substantive

sources of these changepoints—andwhyother timeperiods are not changes—is beyond the scope

of this manuscript. The first two changepoints, however, lend credence to the impact of the Wars

of German Unification and then the loss of Bismarck’s leadership. The final two changepoints are

likely indicative of the move toward World War I and then its start.

Lastly, considering the missed variation that follows from a pooled model, during the long

peace associated with the Concert of Europe defensive alliances were associated with far greater

deterrent e!ects than the pooledmodel finds. This relationship dissipates and almost disappears

with WWI, the interwar period, and WWII.17 This suggests that the pooled estimate is actually

somewhat conservative for much of the data.

16 Note, including overlapping data windows is not a problem if the relationship is truly stable over time, which one assumes
when fitting a single pooled model.

17 Of course, applying the technique appropriately assumes that one is receiving accurate parameter estimates—that the
underlying statistical model is fit appropriately. There are reasons to be concerned about a dyadic research design in this
context, particularly given the amount of evidence that exists for network e!ects in alliances (e.g., Cranmer and Desmarais
2016).
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5 Discussion and Conclusion
We develop a statistical procedure for detecting the locations of coe!icient changepoints when

fitting generalized linear models to TSCS data. The technique first estimates the bounds for

stable statistical behavior through a permutation procedure, which then determines the size of

a Shewhart chart that returns the probability of e!ects changing at each point in time. In a Monte

Carlo simulation we find that this procedure outperforms BCP analysis, non-BCP analysis, and

CUSUMtests inmost simulatedconditions. Last,weapplyour techniques toapopular studyon the

relationship between alliances and the onset of conflict, revealing substantial unmodeled e!ect

heterogeneity.

Before concluding, two cautionary points are merited. First, as Table 1 and Figure 2 demon-

strate, as the number of changepoints increase in simulation iterations, the more inaccurate

all methods become. Given that the exercise is unsupervised, it is not necessarily surprising

that all methods struggle with these hard cases. But the results do suggest that one should

consider how dynamic the time series of interest appears to be before making strong claims

about detected changepoints. If the time series is highly dynamic, then, regardless of method,

detecting all changepoints is a substantial statistical challenge. In such a case, one may be better

suited investigating the accuracy of their coe!icient estimates, exploring potential unmodeled

confounders, andmore.

Second,while theproposed techniqueandRpackage18 are readily extendable toother statistics

of interest that occur over time, one needs the underlying data to apply our technique. More

specifically, thenull distributionof time-invariant e!ects canonly be estimated if thedata (Xi t ,Yi t )

is available for each randomly selected set of time points. If one solely has access to a time series

but none of the data used to generate that time series, then ourmethod cannot be applied. In this

case, other methods must be considered.

Although unmodeled e!ect heterogeneity poses the risk of faulty pooled inferences, it also

presents an opportunity to theorize the sources of temporal e!ect variation. Why might e!ects

change at one timeandnot another?Whymight one change in e!ects be larger thanothers? These

types of questions are substantively interesting and valuable. However, before these questions

can be asked one must di!erentiate stable variation from genuine changes, which is a statistical

challenge. Our proposed technique provides a straightforward means of doing so and improves

upon existing approaches.

Data Availability Statement
Replication code for this article has been published in Code Ocean, a computational reproducibil-

ity platform that enables users to run the code, and can be viewed interactively at Kent et al.

(2020a). Apreservationcopyof the samecodeanddatacanalsobeaccessedviaHarvardDataverse

at Kent et al. (2020b).
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